SEND SMS
SEND EMAIL
 

Products We Offer

Although all stainless steels depend on the presence of chromium, other alloying elements are often added to enhance their properties. The categorisation of stainless steels is unusual amongst metals in that it is based upon the nature of their metallurgical structure-the terms used denote the arrangement of the atoms which make up the grains of the steel, and which can be observed when a polished section of the material is viewed at high magnification through a microscope. Depending upon the exact chemical composition of the steel the micro structure may be made up of the stable phases austenite or ferrite, a “duplex” mix of these two, the phase martensite is created when some steels are rapidly quenched from a high temperature, or structure hardened by precipitated micro-constituents.

Ferritic Stainless Steel
  • These are plain chromium (10.50 to 18%) grades such as grade 430 and 409. Their moderate corrosion resistance and poor fabrication properties are improved in the higher alloyed grades such as grades 434 and 444.

Martensitic Stainless Steel
  • Martensitic Stainless Steel are also based on the addition of chromium as the major alloying element but with a higher carbon and generally lower chromium content (e.g. 12% in grade 410 and 416) than the ferritic types; grade 431 has a chromium content of about 16% but the microstructure is still martensite despite this high chromium level because this grade also contains 2% nickel.

Austenitic Stainless Steel
  • This group contains at least 16% chromium and 16% nickel (the basic grade 304 is referred to as 18/ 8) and range through to the high alloy or "super austenitic" such as 904L and 6% molybdenum grades.
  • Additional elements such as molybdenum, titanium or copper can be added to modify or improve their properties, making them suitable for many critical application involving high temperature as well as corrosion resistance. This group of steels is also suitable for cryogenic applications because the effect of the nickel content in making the steel austenitic avoids the problems of brittleness at low temperatures, which is a characteristic of other types of steel.

Duplex Stainless Steels
  • Duplex Stainless Steels such as 2304 and 2205 (these designations indicate compositions of 23% chromium, 4% nickel and 22% chromium, 5% nickel but both grades contain further minor alloyed additions) have microstructures comprising a mixture of austenitc of austenitc and ferrite. Duplex ferritic-austenitic steels combine some of the features of each class: they are resistant to stress corrosion and cracking, albeit not quite as resistant as the ferritic steels; their toughness is superior to that of the ferritic steels but inferior to that of the austenitic steels, and their strength is greater than that of the (annealed) austenitic steels, by a factor of about two. In addition the duplex steels have general corrosion resistances equal to or better than 304 and 316, and in general their pitting corrosion resistances are superior to 316. They suffer reduced toughness below about-50ºC and after exposure above 300ºC, so are used only between these temperatures.
zoomup


Reach Us
Rajesh Jain (Director)
89/91, 1st Floor, Room No. 111, Durgadevi Street
Girgoan, Mumbai- 400004, Maharashtra, India



Call Us

Share Us

F GT L


Send E-mailSend SMS